The challenge
Write a function that accepts two square (NxN
) matrices (two dimensional arrays), and returns the product of the two. Only square matrices will be given.
How to multiply two square matrices:
We are given two matrices, A and B, of size 2×2 (note: tests are not limited to 2×2). Matrix C, the solution, will be equal to the product of A and B. To fill in cell [0][0]
of matrix C, you need to compute: A[0][0] * B[0][0] + A[0][1] * B[1][0]
.
More general: To fill in cell [n][m]
of matrix C, you need to first multiply the elements in the nth row of matrix A by the elements in the mth column of matrix B, then take the sum of all those products. This will give you the value for cell [m][n]
in matrix C.
Example
A B C |1 2| x |3 2| = | 5 4| |3 2| |1 1| |11 8|
Detailed calculation:
C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0] = 1*3 + 2*1 = 5 C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1] = 1*2 + 2*1 = 4 C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0] = 3*3 + 2*1 = 11 C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1] = 3*2 + 2*1 = 8
Link to Wikipedia explaining matrix multiplication (look at the square matrix example): http://en.wikipedia.org/wiki/Matrix_multiplication
A more visual explanation of matrix multiplication: http://matrixmultiplication.xyz
The solution in Java code
Option 1:
public class Solution { public static int[][] matrixMultiplication(int[][] a, int[][] b) { int[][] resultMatrix = new int[a.length][b[0].length]; for (int i = 0; i < a.length; i++) { for (int j = 0; j < b[0].length; j++) { for (int k = 0; k < b.length; k++) { resultMatrix[i][j] += a[i][k] * b[k][j]; } } } return resultMatrix; } }
Option 2:
public class Solution { public static int[][] matrixMultiplication(int[][] a, int[][] b) { int n = a.length; int[][] res = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { res[i][j] += a[i][k] * b[k][j]; } } } return res; } }
Option 3:
public class Solution { public static int[][] matrixMultiplication(int[][] a, int[][] b) { int n = a.length; int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int f = 0; f < n; f++) { c[i][j] += a[i][f] * b[f][j]; } } } return c; } }
Test cases to validate our solution
import java.util.Random; import java.util.function.IntSupplier; import org.junit.Assert; import org.junit.Test; public class SolutionTest { @Test public void exampleTest() { int[][] a = { {1,2}, {3, 2}}; int[][] b = { {3,2}, {1, 1}}; int[][] expected = { {5, 4}, {11, 8}}; int[][] actual = Solution.matrixMultiplication(a, b); Assert.assertArrayEquals(expected, actual); } @Test public void basicTest() { { int[][] a = { { 9, 7 }, { 0, 1 }}; int[][] b = { { 1, 1 }, { 4, 12 }}; int[][] expected = { { 37, 93 }, { 4, 12 }}; int[][] actual = Solution.matrixMultiplication(a, b); Assert.assertArrayEquals(expected, actual); } { int[][] a = { { 1, 2, 3 }, { 3, 2, 1 }, { 2, 1, 3 }}; int[][] b = { { 4, 5, 6 }, { 6, 5, 4 }, { 4, 6, 5 }}; int[][] expected = { { 28, 33, 29 }, { 28, 31, 31 }, { 26, 33, 31 }}; int[][] actual = Solution.matrixMultiplication(a, b); Assert.assertArrayEquals(expected, actual); } } }